150 research outputs found

    Spatial Analysis of High-Resolution Radar Rainfall and Citizen-Reported Flash Flood Data in Ultra-Urban New York City

    Full text link
    New York City (NYC) is an ultra-urban region, with over 50% impervious cover and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but these methods cannot be used in ultra-urban areas. Here we create a high-resolution radar rainfall dataset for NYC and utilize citizen and expert reports of flooding throughout the city to study flash flooding in NYC. Results indicate that interactions between the urban area and land–sea boundary have an important impact on the spatial variability of both heavy rainfall and flooding, sometimes in contrast to results obtained for other cities. Top days of daily and hourly rainfall exhibit a rainfall maximum over the city center and an extended region of higher rainfall downwind of the city. The mechanism for flooding appears to vary across the city, with high groundwater tables influencing more coastal areas and high rain rates or large rain volumes influencing more inland areas. There is also a strong relationship between sewer type and flood frequency, with fewer floods observed in combined sewer areas. Flooding is driven by maximum one-hour to one-day rainfall, which is often substantially less rain than observed for the city-wide daily maximum

    Near-Infrared Spectroscopy

    Get PDF

    Morning exercise mitigates the impact of prolonged sitting on cerebral blood flow in older adults

    Get PDF
    Preventing declines in cerebral blood flow is important for maintaining optimal brain health with aging. We compared the effects of a morning bout of moderate-intensity exercise, with and without subsequent light-intensity walking breaks from sitting, on cerebral blood velocity over 8 h in older adults. In a randomized crossover trial, overweight/obese older adults (n = 12, 70 ± 7 yr; 30.4 ± 4.3 kg/m2), completed three acute conditions (6-day washout); SIT: prolonged sitting (8 h, control); EX+SIT: sitting (1 h), moderate-intensity walking (30 min), followed by uninterrupted sitting (6.5 h); and EX + BR: sitting (1 h), moderate-intensity walking (30 min), followed by sitting (6.5 h) interrupted with 3 min of light-intensity walking every 30 min. Bilateral middle cerebral artery velocities (MCAv) were determined using transcranial Doppler at 13 time points across the day. The temporal pattern and average MCAv over 8 h was determined. The pattern of MCAv over 8 h was a negative linear trend in SIT (P < 0.001), but a positive quadratic trend in EX + SIT (P < 0.001) and EX + BR (P < 0.01). Afternoon time points in SIT were lower than baseline within condition (P ≤ 0.001 for all). A morning dip in MCAv was observed in EX + SIT and EX + BR (P < 0.05 relative to baseline), but afternoon time points were not significantly lower than baseline. The average MCAv over 8 h was higher in EX + SIT than SIT (P = 0.007) or EX + BR (P = 0.024). Uninterrupted sitting should be avoided, and moderate-intensity exercise should be encouraged for the daily maintenance of cerebral blood flow in older adults. The clinical implications of maintaining adequate cerebral blood flow include the delivery of vital oxygen and nutrients to the brain

    The Molloy Student Literary Magazine Volume 11

    Get PDF
    The Molloy Student Literary Magazine, sponsored by Molloy College’s Office of Student Affairs, is devoted to publishing the best previously unpublished works of prose, poetry, drama, literary review, criticism, and other literary genres, that the Molloy student community has to offer. The journal welcomes submissions, for possible publication, from currently enrolled Molloy students at all levels. All submitted work will undergo a review process initiated by the Managing Editor prior to a decision being made regarding publication of said work. Given sufficient content, The Molloy Student Literary Magazine is published twice annually in Spring and Fall. Interested contributors from the currently enrolled Molloy student community should send work via e-mail attachment and brief cover letter (including a two-sentence biographical statement) to: Dr. Damian Ward Hey, Managing Editor, The Molloy Student Literary Magazine: [email protected]. Enrolled students who are interested in becoming members of The Molloy Student Literary Magazine staff may e-mail letters of inquiry. Excelsior!https://digitalcommons.molloy.edu/eng_litmag/1003/thumbnail.jp

    Chemical abundance gradients from open clusters in the Milky Way disk: results from the APOGEE survey

    Get PDF
    Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostly concentrated at galactocentric distances between ~8 - 15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex/kpc for the alpha-elements [O/H], [Ca/H], [Si/H] and [Mg/H] and -0.035 dex/kpc and -0.040 dex/kpc for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk (R_GC ~7 - 12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant range in age. When breaking the sample into age bins, there is some indication that the younger open cluster population in our sample (log age < 8.7) has a flatter metallicity gradient when compared with the gradients obtained from older open clusters.Comment: 4 pages, 3 figures, To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalb\'an, and M. Steffen, AN 2016 (in press)

    The Hot Gas Exhaust of Starburst Engines in Mergers: Testing Models of Stellar Feedback and Star Formation Regulation

    Full text link
    Using archival data from the Chandra X-ray telescope, we have measured the spatial extent of the hot interstellar gas in a sample of 49 nearby interacting galaxy pairs, mergers, and merger remnants. For systems with SFR > 1 M(sun)/yr, the volume and mass of hot gas are strongly and linearly correlated with the star formation rate (SFR). This supports the idea that stellar/supernovae feedback dominates the production of hot gas in these galaxies. We compared the mass of X-ray-emitting hot gas Mx(gas) with the molecular and atomic hydrogen interstellar gas masses in these galaxies (M(H2) and M(HI), respectively), using published carbon monoxide and 21 cm HI measurements. Systems with higher SFRs have larger Mx(gas)/(M(H2) + M(HI)) ratios on average, in agreement with recent numerical simulations of star formation and feedback in merging galaxies. The Mx(gas)/(M(H2) + M(HI)) ratio also increases with dust temperature on average. The ratio Mx(gas)/SFR is anti-correlated with the IRAS 60 micron to 100 micron flux ratio and with the Spitzer 3.6 micron to 24 micron. These trends may be due to variations in the spatial density of young stars, the stellar age, the ratio of young to old stars, the initial mass function, and/or the efficiency of stellar feedback. Galaxies with low SFR (<1 M(sun)/yr) and high K band luminosities may have an excess of hot gas relative to the relation for higher SFR galaxies, while galaxies with low K band luminosities (and therefore low stellar masses) may have a deficiency in hot gas, but our sample is not large enough for strong statistical significance.Comment: Astronomical Journal, in pres

    The Open Cluster Chemical Analysis and Mapping Survey: Local Galactic Metallicity Gradient with APOGEE using SDSS DR10

    Get PDF
    The Open Cluster Chemical Analysis and Mapping (OCCAM) Survey aims to produce a comprehensive, uniform, infrared-based dataset for hundreds of open clusters, and constrain key Galactic dynamical and chemical parameters from this sample. This first contribution from the OCCAM survey presents analysis of 141 members stars in 28 open clusters with high-resolution metallicities derived from a large uniform sample collected as part of the SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE). This sample includes the first high-resolution metallicity measurements for 22 open clusters. With this largest ever uniformly observed sample of open cluster stars we investigate the Galactic disk gradients of both [M/H] and [alpha/M]. We find basically no gradient across this range in [alpha/M], but [M/H] does show a gradient for R_{GC} < 10 kpc and a significant flattening beyond R_{GC} = 10 kpc. In particular, whereas fitting a single linear trend yields an [M/H] gradient of -0.09 +/- 0.03$ dex/kpc --- similar to previously measure gradients inside 13 kpc --- by independently fitting inside and outside 10 kpc separately we find a significantly steeper gradient near the Sun (7.9 <= R_{GC} <= 10) than previously found (-0.20 +/- 0.08 dex/kpc) and a nearly flat trend beyond 10 kpc (-0.02 +/- 0.09 dex/kpc).Comment: 6 pages, 4 figures, ApJ letters, in pres

    New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought

    Get PDF
    This New York City Panel on Climate Change (NPCC3) chapter builds on the projections developed by the second New York City Panel on Climate Change (NPCC2) (Horton et al., 2015). It confirms NPCC2 projections as those of record for the City of New York, presents new methodology related to climate extremes, and describes new methods for developing the next generation of climate projections for the New York metropolitan region. These may be used by the City of New York as it continues to develop flexible adaptation pathways to cope with climate change. The main topics of the climate science chapter are: (1) Comparison of observed temperature and precipitation trends to NPCC2 2015 projections. (2) New methodology for analysis of historical and future projections of heatwaves, humidity, and cold snaps. (3) Improved characterization of observed heavy downpours. (4) Characterization of observed drought using paleoclimate data. (5) Suggested methods for next generation climate risk information

    Development of Structural Energy Storage for Aeronautics Applications

    Get PDF
    The National Aeronautics and Space Administration (NASA) has identified Multifunctional Structures for High Efficiency Lightweight Load-bearing Storage (M-SHELLS) as critical to development of hybrid gas-electric propulsion for commercial aeronautical transport in the N+3 timeframe. The established goals include reducing emissions by 80 and fuel consumption by 60 from todays state of the art. The advancement will enable technology for NASA Aeronautics Research Mission Directorates (ARMD) Strategic Thrust 3 to pioneer big leaps in efficiency and environmental performance for ultra-efficient commercial transports, as well as Strategic Thrust 4 to pioneer low-carbon propulsion technology in the transition to that scheme. The M-SHELLS concept addresses the hybrid gas-electric highest risk with its primary objective: to save structures energy storage system weight for future commercial hybrid electric propulsion aircraft by melding the load-carrying structure with energy storage in a single material. NASA's multifunctional approach also combines supercapacitor and battery chemistries in a synergistic energy storage arrangement in tandem with supporting good mechanical properties. The arrangement provides an advantageous combination of specific power, energy, and strength
    • …
    corecore